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Fast Parallel Tree Codes for Gravitational of N bodies in much less than O(N2 ) time. Tree codes

and Fluid Dynamical N-Body Problems I have been reported to scale as O(N) or O(N log N), but
tthe "big-O" notation can be misleading for practical val-

John K. Salmon ues of N. where true performance is dominated by tie
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91125 Large-scale application of tree-based approximation meth-

2 ods has (to our knowledge) only occurred in astrophysics,
Michael S. Warren (41, 16. 40, 24] although preliminary work has been done

Theoretical Astrophysics, Lo.i Alamos National Laboratory, Los on two-dimensional [33,31.21, 191, and three-dimensional
Alamos, NM 87545 systems [22, 39, 8, 151 from other disciplines.

Grdgoire S. Winckelmans 3  One roadblock to the widespread acceptance of tree
Graduate Aeronautical Laboratories. California Institute of codes is that they are inherently complex to program, es-

Technology pecially for parallel machines. We report on an implemen-
tation of a tree code which is not specific to a particular

ABSTRACT problem domain. Although designed with astrophysical
research firmly in mind, the code described here is used

We discuss two physical systems from separate disci- to address example problems in vortex dynamics as well
plines that make use of the same algorithmic and math- as astrophysics. We report on its performance on the In-
ematical structures to reduce the number of operations tel Touchstone Delta system with up to 512 distributed-
necessary to complete a realistic simulation. In the gray- memory processors.
itational N-body problem, the acceleration of an object Two outcomes are possible when algorithmic advances
is given by the familiar Netwonian laws of motion and drastically reduce the time and space required to solve a
gravitation. The computational load is reduced by treating class of problems. The first is that the problems cease to be
groups cf bodies as single multipole sources rather than in- "supercomputer applications", and fall into the domain of
dividual bodies. In the simulation of incompressible flows, workstations and personal computers. The second is that
the flow may be modeled by the dynamics of a set of N practitioners gradually advance the state-of-the-art in the
interacting vortices. Vortices are vector objects in three di- underlying discipline, and much larger problems become
mensions, but their interactions are mathematically similar the norm. In the latter case, supercomputers remain a
to that of gravitating masses. The multipole approximation critical component, and it is important to address issues of
can be used to greatly reduce the time needed to compute whether the new algorithm is well-suited to supercomputer
the interactions between vortices, architectures, i.e.. massively parallel systems. The second

Both types of simulations were carried out on the Intel outcome has certainly been the case in astrophysics, where
Touchstone Delta, a parallel MIMD computer with 512 state-of-the-art simulations now evolve systems of 107-108
processors. Timings are reported for systems of up to 10 bodies. We expect it will occur in other fields as tree-based
million bodies, and demonstrate that the implementation methods become generally available.

" scales well on massively parallel systems. The majority of
the code is common between the two applications, which 2 THE GRAVITATIONAL N-BODY PROBLEM
differ only in certain "physics" modules. In particular, the
code for parallel tree construction and traversal is shared. 2.1 Mathematics

While it is possible to describe tree methods in terms
,. I INTRODUCTION of broad generality and abstraction, we find it helpful to

•i Tree-based algorithms have had a major impact on the begin with a concrete example and to develop the abstrac-
study of the evolution of gravitating systems because they tion in stages. (Not coincidentally, this is also how our

S provide a method of computing the mutual interactions understanding of the problem evolved). Newton himself
would find the underlying mathematics of the gravitational

'Submitted to the International Journal of Supercomputer Applications, N-body problem quite familiar. In modem notation, New-
Aug 6, 1993 ton's law of gravitation, and his second law of motion are:
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t) - m (2) moments, etc. In general, the second term in the expan-

= e X - X9(0)I sion contains the dipole moment of S. but since the dipole
moment vanishes about its center-of-mass, the dipole con-

We have chosen units in which the gravitational constant, tribution to the force-law vanishes by construction. The
G = 1. When evaluated at the position of one of the parti- first term on the right-hand-side of Eq. 4 approximates
cles, xP(t), the expression in Eq. 2 is clearly singular. The the contents of S as a point source at its center of mass.
summation must be understood not to include the "self- Subsequent terms correct for the shape of the matter dis-
interaction" of a mass-point with itself. Alternatively, it tribution within S. In general, we can keep as many terms
is possible to artificially "smooth" the Netwonian inter- as desired in the expansion of the multipole moments of
action, so that the gravitational potential between nearby S. We designate the highest retained order as p, so p = 1
bodies is bounded. This procedure also has the side-effect for the monopole approximation (since the dipole vanishes
of removing "collisions" which is often desirable from a exactly, we may as well say that we've "retained" it), and
numerical orphysical point of view [23,171. Wecandefine p = 2 for the quadrupole approximation.
a smoothed Green's function, G,(x) = -G(aM), and a Eq. 4 represents a major simplification, since its eval-
smoothed potential: uation requires a fixed amount of time, regardless of how

many points are in S. It is analogous to the observation
dV2 X,(t) = VO,(xP(t),t) that, if one wishes to know the force exerted on an apple

by the -. 1050 atoms in the Earth, one can approximate

= - ZVG,(x3(t) - x•(t))mq (3) the Earth as a point mass located at its center-of-mass, and
q compute the force in a very small number of operations. It

is by systematic application of Eq. 4 (or something math-
Many choices are available for the smoothed Green's func- ematically equivalent) that all the fast N-body methods
tion. For the tests reported here, we use the Plummer reduce the overall complexity from O(N 2 ) to something

s n" much more tractable. Eq. 4, of course, presupposes that
Equations 1 and 2 or 3 constitute a system of second- the aggregate data, i.e., Ms, x•,,, etc., are known, so any

order ordinary differential equations. As such, it is not method which uses it must (a) compute the aggregate data
particularly difficult to integrate in time numerically. The efficiently and (b) use each aggregate datum many times
computationally challenging part is the evaluation of N to amortize the cost of computing it.
right-hand-sides, each of which is a sum of N - 1 terms. We must also remember that Eq. 4 is an approximation.
The gravitational force-law ls long-range, i.e., the force- It must be used with care as it can introduce excessive errors
law falls off slowly enough that contributions from distant into a calculation if used inappropriately. We have shown
objects cannot be assumed to vanish. Thus, it is not per- (38] that the error introduced by using an approximation
missible to simply disregard contributions from bodies thai like Eq. 4 can be bounded as follows:
more distant than some prescribed cutoff. 1 1

We can turn again to Newton, at least for the first term e11vO(x)1 -)2 (5)
in the solution. Let us imagine that the point x is well- '
separated (in a sense defined below) from a spatially locel- -+( )
ized subset of the rest of the points, S. Then the sum (at d (I+2) dIp+2)

least over the bodies in S) may be approximated by: where d = Ix - xm[, b = maxqEs 1lxq - xl,,,4l. The

m _ MS moments B, are defined as
Slix - xqll = lix - Xmll = B IlXq - x,.llI'ilmql (6)

qqES
+ 2 ix -XC•,( - + ... (4) Equation 6 is essentially a precise statement of the fact that

the multipole approximation is more accurate when:
where Ms is the total mass in 8, xcm is its center-of-mass
and Q"; is the reduced quadrupole moment of S about it's din
center of mass. Indeed, these are the first three terms of an
expansion which describes the subset of points in terms of * The sources are scattered over a small region (small
their mass, center-of-mass, quadrupole moments, octopole b).
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"* High order approximations are used (large p). is adaptive so that in the center where there is a high density
of bodies, the tree is more finely resolved. The adaptivity

"* The multipoles which have been neglected are small is achieved by building the quad-tree so that terminal cells
(small B,..). contain exactly one body [3]. Thus, the depth of the tree is

Note that the multipole series does not converge at all approximately logarithmic in the local density of particles.

for d < b, so this constitutes a precise statement of the
condition that the point 'ii be "well-separated" from the
points in S. Furthermore, notice that increasing the order
of the multipole approximation employed isjust one way to
improve the approximation. It is an open (and extremely
interesting) question whether high-order approximations
are cost-effective, or whether it is simply better to restrict
use of the approximation to larger values of d.

2.2 Data Structures

The approximation in Eq. 4 is only part of the story. A
mechanism must be found to identify candidate subsets of
bodies, compute their aggregate parameters (mass, center-
of-mass, etc.), and selectively apply the multipole approxi-

mation to the evaluation of accelerations. Several different
data structures have been proposed including binary trees
(2, 7], 2d-trees [3] (where d is the dimensionality of the
underlying space) 2, and multigrids of fixed depth [20,481.
The tree structures are inherently adaptive, which allows
them to efficiently model systems wh-ch contain large den-
sity contrasts, while the multi-grid structures may enjoy
some performance advantages because the fundamental
objects are typically multi-dimensional arrays accessed in Figure 1: A quad-tree with 2000 centrally concentrated
regular and predictable patterns, i.e., patterns suitable for bodies. The tree is more refined in regions of higher par-
efficient execution on vector and super-scalar processors. ticle density because of the rule that a terminal cell can
We have elected to work with adaptive oct-trees in three di- contain only one body.
mensions because the astrophysical problems that bred our
initial interest in the subject are subject to extremely large,
dynamic density contrasts, making adaptivity a necessary Each cell in an oct-tree has topological properties (par-
feature of any viable method. Some of the other problem ents, daughters, siblings), geometrical properties (spatial
domains where tree-methods show promise may not re- coordinates, size), and numerical properties (mass, center-
quire the adaptivity inherent in our code. It remains to be of-mass, quadrupole moment, etc.). How to represent
seen whether the overheads associated with adaptivity are these properties in a program presents the programmer
significant vis-a-vis a highly optimized non-adaptive code. with several choices. The topological aspects of the tree

An oct-tree is a partition of three-dimensional space can obviously be captured (at least on a uniprocessor) with
into cubical volumes. Each cube has up to eight daugh- pointers. Complications arise in parallel with regard to the
ters, obtained by splitting the cube in half in each of the meaning of off-processor pointers (for distributed memory
three cartesian directions. Clearly, in d dimensions, the systems), or synchronization (for shared memory systems),
tree branches up to 2 d ways at each level. Quad-trees are but these problems can be overcome [36]. [42] has demon-
far easier to illustrate on paper than oct-trees, so we use strated large-scale parallelism when the data needed by
them in the figures. A quad-tree with 2000 centrally con- each processor can be identified in advance. This method
centrated bodies is shown in Figure 1. Notice that the tree has been used in a number of astrophysical simulations

[37, 41] which used a much less rigorous error bound than
2We usually refer to quad-trees or oct-trees in two and three dimensions Eq. 6.

94-36314
S|~ONl|



Unfortunately, Eq. 6 does not admit a pre-determination 2.3 Control Structures
of which data will be required by each cell. This is prob- We have shown (at least schematically)how our tree will
lematical for the methods of [36). so a new approach to We have sn (at least tically how o e will
parallelism, based on accessing data on demand has been be represented in memory. We now turn to how we will useimplemented. The new method is built on the idea of the data to evaluate gravitational forces. For this, we must

traverse the tree data structure accumulating acceptable
assigning to every possible cell in the tree a unique, multi- interactions as w, proceed. The traversal is governed by a
word key. A 64-bit key allows one to identify every cell Multipole Acceptability Criterion (MAC) which identifies
in a oct-tree with 21 levels. This has proved adequate for whe Accently craterto be used.
highly clustered simulations with up to 107 bodies. The when Eq. 4 is sufficiently accurate to be used.
set of all possible keys is clearly much larger than the set Many options are available for the MAC [38]. In this

of keys that will be present in any given simulation. This paper, we elect to bound the error introduced by each

state of affairs suggests a hash-table as an appropriate data multipole approximation. Thus, we can use Eq. 6 directly

structure for storing the tree data, and allow only interactions for which the right-hand-side

Figure 2 shows schematically how die keys designate of Eq. 6 is less than some prescribed tolerance.

unique cells in the tree. The root has key 1. The daughters To use Eq. 6, we simply carry out a top-down traversal

of any node are obtained by a binary left-shift of the par- of the tree independently for each body, terminating the

ent's key by d, and then setting the low bits to a number descent whenever Eq. 6 is satisfied by a cell. In those

between 0 and 2 d - 1 to distinguish amongst the siblings, cases, Eq. 4 is evaluated to compute the influence of the

The parent of a cell is obtained by right-shift of its key by contents of the cell on the body. If we reach a terminal

d. The bodies in the simulation can be assigned unique node of the tree before Eq. 6 is satisfied then individual

keys as well, simply by finding the key corresponding to body-body interactions are computed. This strategy forms

the smallest possible cell that contains the given body. the basis of our vortex dynamics code (see Section 3).
For the gravitational problem, we have improved on

this strategy, by noting that nearby particles feel almost
the same influence from distant objects. To extend our
"apple" analogy further, we are now taking note of the fact

__ _ _ _ __ that two neighboring apples feel almost the same gravi-
tational field from the multitude of elementary particles
constituting the Earth. Thus, if one wishes to know the
gravitational acceleration of two apples in the same tree, it
may be sufficient to evaluate Eq. 4 only once and use the

-,0o 101 same answer for both. In fact, this analogy again only cap-
tures the first (constant) term in a series expansion. This

010 10 7-i-rrw7'iýi-i-i-time, the expansion is a Taylor series for Eq. 4 around
1 001 Z 1100 01-the point x. This observation does not lead to the dramatic

1000o111 speedup resulting from the initial observation that the Earth
itself may be approximated by a point mass. Nevertheless,

11i00110 a significant reduction in the number of interactions is pos-sible. In order to pursue this line of reasoning, we need
10o0101 an error bound analogous to Eq. 6. A detailed analysis is

in preparation for publication elsewhere. We state here,
without proof. that the combined error resulting from both

.- the dipole approximation and the linear term of a Taylor
series expansion of Eq. 6, at a distance A from x is bounded

Figure 2: A four level quad-tree, expanded to show the by:

relationship between parent cells and daughters. The key 1 1 /3- 2B3  (
values of each cell are shown in binary. Daughter keys eIlv#(X)It < d 1- _2 <7-- )

are obtained from parents by a two-bit left-shift, followed

by binary OR of a daughter-number in the range 00-11 where
(binary). 1(2) = B 2 + 2ABI + A2Bo (8)
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Use of Taylor series to reduce the number of evaluations We have already seen that it is desirable to sort the bod-
of Eq. 4. introduces a new class of interactions into the ies in our simulation into a sequence based on the hash-
problem. Formerly, Eq. 4 was all that was required to table key. We return to the concept of a key-sorted list
evaluate the interactions between bodies and the aggregate of bodies to describe our parallel decomposition. Imagine
data stored in cells. Now it is also necessary to evaluate that the bodies are already sorted in increasing hash-key
interactions between source cells. i.e., the aggregate data order. We simply break the list into segments and assign
describing the field sources, mass, center-of-mass, etc.. and each setment to a processor. That is, a processor is respon-
sink cells, i.e.. the coefficients of a Taylor series expansion sible for computing forces on a group of bodies that forms
around some arbitrary point. In addition, we must compute a contiguous segment of the sorted list of bodies. Fig-
translations of the origin of a Taylor series expansion from ure 3 shows a path which traces out values of increasing
the center of a parent sink cell to the centers of its daughters. key in a quad-tree with depth three. The decomposition is

We can compute the field at every body position by loop- achieved by cutting the curve into P (number of proces-
ing over all of the body positions in order of increasing key. sors) segments of equal cost.
For each body, we find the nearest common ancestor with
the previous body. Any Taylor expansions above that com-
mon ancestor remain valid for the new body. while those
in the intervening levels must be computed by translat-
ing the Taylor expansion of the parent, and accumulating r -----.------ - -

any cell-cell interactions that satisfy the extended cell-cell ,
MAC (based on Eq. 7). It is crucial for bodies to be sorted ....----- -. ---- - ----- -. . '
in hash-key order because that guarantees a high corre-
lation between the spatial positions of successive bodies, .
and hence only a small number (one on average) of Taylor . ,
expansions will need to be recomputed for each new body.
Thus, the use of the Taylor series expansion reduces the ------ ------ ------------ ----------------
asymptotic order of the method to O(N), but this means I

little unless the constants of proportionality are also com- L ----- -
pared. Preliminary results indicate that the total number of I I
floating point operations is about a factor of 6 lower when _
allowing cell-cell interactions and using Eq. 7. compared
with use of Eq. 6, in a one million body simulation.

2.4 Parallelism

Two basic issues arise in parallelizing the many sci- L --- J ------ L ------ L - .---- ------ L------ L-..... . - J
entific algorithms for distributei memory machines: de-
composition and data acquisition. Decomposition refers Figure 3: A curve that traces increasing values of the
to the strategy used to partition the problem amongst the hash-function key in a quad-tree of depth three. The de-
available processors. Data acquisition refers to the need composition is obtained by locating particles on this curve
to communicate between processors so that they have the (more precisely, on the analogous curve that fills the low-
data they need to carry out the necessary computations est level of the tree), and assigning contiguous segments
on their subset of the data. Decomposition is concerned to processors.
with load balance, i.e., arranging that all processors finish
approximately at the same time, and with minimizing the
volume of communication. Data acquisition is often con- By dividing the path into equal-cost pieces, we allow
cerned with minimizing or hiding the large latency associ- for the possibility that some bodies are more expensive ------------
ated with every interprocessor message. This is achieved than others. The cost of each body is a measure of how
by overlapping communication and computation when the much cpu time is required to compute the forces on it .........
hardware supports it, and/or by buffering messages into In a highly clustered, adaptive tree, the ratio of the most
large blocks which can be sent with only a single latency expensive to least expensive body can be as high as 20, ----

overhead, so it is important to balance actual cost, rather than just :ES

or
Dist



particle number. We determine the decomposition-cost of ous communication and calculation, the code can easily
each body empirically by recording how many interactions take advantage of it. On the other hand, it is necessary to
it required on the previous timestep. On the first timestep, make substantial changes to the critical inner loop of the
we assign every body equal cost. This can lead to consid- tree traversal routine, to allow for deferred processing of
erable load imbalance on the first timestep, but the cost is off-processor cells, and simultaneousprocessing of several
negligible over the course of a simulation which typically bodies [43].
requires hundreds or thousands of timesteps.

This decomposition has the advantage that it is can be 2.5 Performance

generated with a general-purpose parallel sort routine, and We report here some results obtained with the gravi-
that it leads to spatial locality in the decomposition. The tational code on the Intel Touchstone Delta system. Al-
latter property reduces the amount of interprocessor corn- though the Delta has 576 processors (both 80386 and i860),
munication traffic, as spatially nearby bodies tend to re- a maximum of 512 of the 40Mhz i860s may be assigned
quire the same off-processor information. In contrast to the to a single job at any one time (the others are responsible
decomposition used in [36], boundaries between proces- for various system tasks like managing peripheral devices,
sors correspond to divisions within the tree data structure. user logins, etc.). Each processor has 16Mb of memory and
Notice also that from one timestep to the next, the bod- is connected to four neighbors through a two-dimensional
ies do not move significantly, so that on every timestep mesh routing network. Interprocessor communication is
but the first, the sorting subroutine is presented with an accomplished by explicit system calls embedded in the ap-
almost-sorted input. plication's C or FORTRAN code. There is no hardware

The second issue in parallelism is the acquisition of support for shared memory. The code is written entirely
off-processor data. One strategy, discussed in [36]. is in ANSI C. and has been ported to several other paral-
to acquire all the necessary off-processor data in a corn- lel platforms, including the CM-5. the SP-I, workstation
munication phase prior to the computation. This has the networks, the Intel Paragon and the Ncube-2. Notably,
advantage of leaving the main loop of the computation the code also compiles and runs with no modifications
essentially untouched, allowing for re-use of highly opti- whatsoever on sequential platforms that supply an ANSI
mized sequential code. This technique also requires that it C compiler.
be possible a priori to determine which data will be needed We report results that use a monopole approximation for
by which processors. Unfortunately, when Eq. 6 is used the force law, and a first-order Taylor series for translation.
for the MAC, it is not possible to pre-determine which Thus, the first neglected error term is always inversely pro-
data will be necessary. Thus, we adopt a new strategy of portional to the square of the distance between the source
acquiring off-processor data on demand. and the observation point. Errors in the acceleration are

This new scheme requires a small modification of the analytically bounded, using Eq. 7, to be less than 2% of
hash-table data structure used to represent the tree. In par- the force at the edge of the spherical domain. In practice,
allel, the hash table lookup functions can return in three the errors were typically much less than 2%.
possible ways: they can find the requested item, they can The particle distribution is taken from a series of sim-
report that the requested item does not exist, or they can ulations designed to simulate the formation of large-scale
report that the requested item exists in another processor's structure in the universe3. We chose a representative distri-
memory. In the last case, it is left up to the caller how to bution from late in the evolution which displays significant
proceed. The simplest approach would be to simply ex- clustering. The density contrast between the most dense
ecute a remote procedure call to retrieve the remote data. and least dense regions in the simulation is approximately
This would be unacceptably slow, as it would entail sev- 106. The particles represent the so-called "Dark Matter"
eral times the the full message latency for every remote which is believed to dominate the mass of the universe. The
data access. An alternative is to enqueue a request to be region simulated is a sphere 10Mpc in diameter, containing
dispatched at a later time (after many more requests have 1099135 bodies Each body has a mass of approximately
been enqueued), and to proceed with other branches of the 3.3 x 107 solar masses, which is appreciably less than the
tree, or with other particles. This greatly reduces the total mass of a typical galaxy (101 -1013 solar masses). To gen-
number of messages sent, and hence the overhead due to erate data sets with fewer bodies we simply chose bodies
message latency. In addition, this approach offers the pos- at random from the full data set. While this procedure
sibility of almost totally overlapping communication with
calculation, because if the hardware supports simultane- 3 is timestep 540 of model 128m.n- I b in [411
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may be questionable from a physical point of view, it en- due to the activity of other users or inherent variations from
sures that the scaling behavior as a function of N will not one timestep to the next.
be contaminated by differences arising from different spa-
tial distributions of bodies. Figure 4 shows approximately
87000 of the bodies in our data set.
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Figure 5 shows timings for data sets with N against N. In this figure, "perfect" parallelism would be
5000, 10000. 20000, 50000, 100000, 200000, 500000 represented by all curves lying on top of the extrapolation
and 0o99l35 bodieson 1, 2,4,..., 51 processor subsets oftheP = I curve. ItisclearthattheP = 512curveis
of the Delta. The times reported are the total time per still approaching the others, i.e., we have not yet reached
timestep (force evaluation, velocity update, position up- the large-N limit, even with over one million bodies. In
date), averaged over 2 to 5 timestepsr (more for less time- addition, Figure 6 shows that the scaling of T with N

consumting runs). We do not count the first time step be- is slightly super-linear for the range of N studied. In
cause it suffers from an anomalous load imbalance which fact it is close to T iu N12

, but it is Very difficwult to
is corrected in lator steps after the "cost"of each particle distinguish between slightly different functional forms of
is known. The variation between timesteps was typically the asymptotic scaling behavior with only four P = 1 data
a few percent. except for the first, which typically took points.
about twice as long as the others. ehme machine was not We have also run a series of benchmarks with a uniform,
dedicated during these benchmarks, so variations may be spherical distbution of points (not shown). In Figure 7,
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we plot T' against N up to 10 million uniformly distrib-
uted bodies. but only up to 256 processois (the full machine
was not available before press time). The force evaluations
are 3-5 timesfaster for the uniform distributio of particles,

compared with the highly clustered, evolved astrophysical
data. In addition, the N-dependence appears to be very
close to T oc N. A detailed analysis of the dependence
of the time-per-timestep on the particle distribution will be
presented elsewhere.

10oie)010' t

Figure 6: The same data as Figure 5, but the abscissa is Figure 7: Timing data for a uniform, spherical distribution
_.P.The vertical distance from the (extrapolation of the) of bodies plotted with an abscissa of Z• The vertical

P = 1 curve to the other curves is a good indicator of distance from the (extrapolation of the) P = I curve to the
parallel overhead. In addition, these curves indicate that other curves is a good indicator of parallel ovcrhead. For
the time per timestep scales slightly super-linearly with uniform data. the N dependence is very close to linear, and
N. It is clear that parallel overhead has still not reached its parallel overhead is less than 50% for 1 0 million bodies on
"large-N limit" with 1 million bodies on 512 processors. 256 processors.

3 TiE VORTEX PARTICLE N-BODY PROBLEM

The vorticily equation (to = V × u, and hence V . w =
0) for an incompressible fluid (V . u = 0) is obtained from
taking the curl of the momentum equation:

P-128
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where PL = + (u V) f is the Lagrangian derivative The evaluation of the velocity field induced by a system

and V is the kinematic viscosity. The vorticity equation of vortex particles is thus very sinilar to the evaluation of
is thus a nonlinear transport equation which can be solved the acceleration field induced by a system of point masses
using a particle method. hi the regularized version of the in gravitation. Eq. 13 is structurally almost identical to
method, [32, 11, 12, 34, 35, 27, 5, 6, 29, 1, 28, 4, 9, 14, Eq. 3. One need only replace the scalar particle mass m9

10, 13, 44, 45, 46, 47] the particle representation of the with the vector vorticity strength, ,yq, and the real valued
vorticity field is taken as: multiplication with a vector cross-product. Just as with the

gravitational case, it is possible to approximate the summa-
G,,(x:f) = L Cf(x - xf(t)) (w'(t)vol) (10) tioninEq. 13 with an expression similar to Eq. 4 involving

q the multipole moments of the vorticity distribution. The
= ( ",(x - x'(t)) -/q(t). assymptotic behavior of the Green's function. G, is even

q the same, which allows us to re-use much of the machinery
where C, is a radially symmetric regularization function involving error bounds from [38]. A vortex particle code
and o is a smoothing radius (i.e., a core size): CIx) is, however, more costly than a gravitational code: (1)The

(particle strength and potential fields are vectors rather than
S ¢• / with the normalization 4ir fo C(s) p2 dp - scalars, so the potential evaluation is immediately three

1 . Notice that C,, does not constitute a generally times as costly. (2) One must evaluate both the first and
divergence-free "basis". second derivatives of the vector streamfunction in order to

The velocity field is computed from the particle repre- obtain both the velocity vector and the velocity gradient
sentation of the vorticity field as the curl of a vector stream- tensor, which appears in the right-hand side of Eq. 17.
function, u, = Vx ib, (hence V • u, = 0). The vector Other difficulties arise from the interpretation of the
streamnfunction thus satisfies: V2a.,(x, t) = -r,.(x, t). vortex particles as representing a continuum. Hence, one

Defining G,(x) = -G (llxll) with G(p) such that needs to use a smoothing function that leads to conver-

I d ~2 dG gence, e.g., the Gaussian smoothing, which is consider-

C(p) =V
2 (p) ( P 2- ably more costly than the Plummer smoothing used in the

-= 7 gravitational code. In vortex simulations, one also needs
one obtains to ensure that the smoothed vortex particles continue to

_) _overlap for the duration of the simulation. Hence particle
'0 (x, t) = L G#(x - xq(t)) 7 q(t) (12) "redistribution" (from a deformed set of particles onto a

q new set of regularly spaced particles) may become nec-
u,(x,t) = E (VG°,(x - xf(t))) x 7-(t) ,(13) essary in long time computations [25, 26]. Finally, the

q particle field, Co, is not guaranteed to remain a good rep-
resentation of the divergence-free field, w,, = V x ut,

The Gaussian smoothing is used: for all times. Hence, in long time computations, one may
(2) 1/2 need to "relax" the particle weights so that r, remains a

41r C(p) = \Ir- eP 2 /2, (14) good representation of w, [44, 47, 30]. These considera-

( 2) tions apply to any vortex method and are not significantly
41r G(p) = erf (r ' (15) affected, one way or the other, by use of a tree code to

P /2. carry out the field summations.
It leads to a second order numerical method, provided the When using multipole expansions up top = 2. (mono-
core-overlapping condition remains satisfied (i.e., • _ 1 pole + dipole + quadrupole), estimates for the error on
where h is a typical spacing in between particles). We and u = V x 1, at an evaluation point x, a distance d from
approximate eff(ý2) - I for p > 4. i.e., for lixil > 4a, the center x, of a multipole expansion are obtained as:

we have 4rG•,(x) = l

In th- inviscid case, the evolution equations for the
particle position and strength vector are taken as 1 1 B 3  I I b B2d q (t) = U.,(XI (t), t), (1)l~l < 1 i) 73 -d(1- -k) d3 '(8

d e- <4--__-3-_-

d q (t) = (Vu.,(x'(t),t)) . /q(t) . (17) - ± 4132

LIt(7 d2 (I _!) I 1 d3 d
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S ! [4 b B2 3 ]ý2rhR )a • 3 Bo~j '(19) -- ___, _ ....... __ ,___ .

d2l...) 2  d3  Bod4J 9'

where x•, b = [x-xJJ., BO and B2 are box properties:

Bo = (20)

B2  = EI ix' - x,112 11'fI " (21)

We choose "0

Iq hi II Xqx= B (22)

the centroid of the absolute value of the particle strenpths,
as the center of our multipole expansion. This choice ana-
lytically minimizes B2 , and hence minimizes the bound on
the error introduced by the multipole expansion. Notice
that the dipole term of this multipole expansion does not
vanish. The dipole moment vanishes only in the gravita-
tional case because the masses are positive definite scalars,
and the centroid of the absolute value of the masses is iden-
tical with their center of mass. The same non-vanishing of Figure 8: The positions of 81920 vortex particles initially
the dipole contribution will occur in electrostatics where on the surface of a unit sphere. Each of the particles
each particle has a scalar electric charge which may be of carries a vector vorticity. p = hw = -Lsin(e)i, which is
either sign. The dipole moment of a collection of such not shown for clarity. This simulation is slightly different
charges does not vanish when the expansion is centered at from the the ones for which timings are presented because
the centroid of the charge absolute values, it uses a core-size or 0.05.

We carried out a series of timings for a problem rep-
resenting the evolution of an initially spherical vorticity
distribution. Figure 8 shows the initial positions of vortex 0 .
particles representing a surface vorticity of thickness, h,

3IA = hw -- sin(O)6v,. (23)
87r

The problem was discretized by recursively splitting the
faces of an icosahedron, and then projecting them onto a
unit sphere. The strength of each vortex paticle was taken
as -y = pA, where A is the area of the projected triangle, -

and ps is the value of Eq. 23 at its centroid. The thickness
was chosen to be equal to the length of the sides of the .2 ___

triangles before projection. By terminating the recursive
splitting at different levels, we obtained the discretizations
shown in Table 1. The core-size was taken as o- = h.
Figure 9 shows the 81920 vortex system evolved to t =
2.50 (after 100 timesteps). Note that although we depict the
particles as points, they actually carry a three-component .
strength vector -y. Representing the particles as vectors
merely clutters the figure. The simulations were done
using a "sum" error tolerance (see [381) based on Eq. 19, Figure 9: The vortex simulation of Figure 8, evolved

which guarantees that the total error in the velocity is less through 100 timesteps to t-2.5.
than 0.001.
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Timings are shown in Figure 10 for various P =
1,2,4,... 512, and for the discretizations shown in Ta- level h N
ble 1. The timings correspond to the total wallclock time 4 0.0657 5120
per iteration. i.e.. the time spent in parallel decomposition, 5 0.0329 20480
computing the vector stream function 0, the velocity u. 6 0.0164 81920
and the gradient of u at each particle position, as well as 7 0.00821 327680
updating the particle positions and strengths according to 8 0.00411 1310720
Eq. 16. and 17. As with the gravitational code, we report
an average over 2-5 iterations, and we do not include the Table 1: Parameters for the series of vortex particle method
first timestep because of its anomalous parallel load imbal- simulations.
ance. Comparison with the gravitational timings confirms
the claim that the vortex code is somewhat more costly
than the gravitational problem with N is again slightly super-linear. This time the expo-

nent is approximately T cx NI"2 .

1000 7P4 .-.- ,-6 I

/ // -/ /' /"//,
P=/ P,25,

10 / ',/ //, //.o,

too- 01/ 7

/X1

oo / . / ,,/ // /. ,
V / 7/// / ,

./.
10'- 7// "/'"•" /•

10. 10' :0-
N ("o.Ii-S) I .o0-10

N (__ii-•)

Figure 10: Time per timestep for the vortex method vs.
number of vortices, averaged over several timesteps. Figure 11: The same data as Figur 10, but plotted with

an abscissa of TP The parallel overhead can be estimated

j9-.

by measuring the d:*Oerence between a P j'- I curve and
fthe (extrapolation of the) P = 1 curve. The large N

Thesam dta s eplttd wth n bscss of~ N dependence is again slightly super-linear over the range of
Figure 11. to better illustrate the dominant trends. Here, it N studied.
is clear that one million bodies clearly is in the "large-N"
limit, and the parallel overhead (obtained by measuring the
difference between the P = 512 curve and the extrapola-
tion of the P I curve) is in the neighborhood of 200o. 4 CONCLUSION

Thus, although the vortex simulation is overall, somewhat
slower than the gravitational simulation, it makes more ef- The two methods described here demonstrate that tree
ficient use of the parallel hardware (a fact that is of small codes are versatile and scale well on large parallel com-
consolation to the user with A limited computational bud- puters. Despite the complexity of the algorithms involved,
get). Figure 11 also demonstrates that the scaling behavior we have been able to use essentially the same code to solve
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problems in vortex dynamics and astrophysics. The code, integral equation solver which will be incorporated into
including all auxiliary software for such tasks as random our vortex dynamics code to account for the presence of
number generation, fast approximate square-root, a prim- bluff bodies in the flow. The resulting program will use
itive debugging facility, flexible timers and counters, etc., tree code codes in two separate contexts: to compute the
as well as the essential elements: parallel quicksort, multi- interactions between vortice4, and to compute the interac-
word key and hash-table manipulation, tree construction, tions between surface panels as part of an iterative solver
traversal and field evaluation, consists of about 9000 lines to satisfy the boundary conditions on the surfaces. The
of C source code and header files. Of this, about 7000 lines interactions are different in the two contexts, as are the
are in a common library which is completely shared by the spatial distribution of sources and the error criteria, but the
two applications (in fact, much of the library is not even parallel tree code library provides much of the necessary
specific to tree-codes). Of the remaining 2000 lines, about machinery for both contexts. Preliminary results indicate
700 are identical in the two applications. We are pursuing 1 million-panel systems can be solved on the Delta in a few
further abstractions which will allow us to separate these minutes. Such problems would be completely intractable
into the common library L.s well. for traditional solvers.

It is important to note that the programs and libraries de-
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